Classifying Complex Faraday Spectra with Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
Classifying Relations by Ranking with Convolutional Neural Networks
Relation classification is an important semantic processing task for which state-ofthe-art systems still rely on costly handcrafted features. In this work we tackle the relation classification task using a convolutional neural network that performs classification by ranking (CR-CNN). We propose a new pairwise ranking loss function that makes it easy to reduce the impact of artificial classes. W...
متن کاملSplit-Complex Convolutional Neural Networks
Beginning with the seminal work of [1], the last half-decade of artificial intelligence and computer vision has been dominated by the stunning success of convolutional neural networks (CNNs). In visual recognition, a robust classifier must be able to recognize objects under deformation. One solution that has been proposed for improving invariance under rotation is complex-valued CNNs [2, 3]. Wh...
متن کاملDeep Recurrent Convolutional Neural Networks for Classifying P300 Bci Signals
We develop and test three deep-learning recurrent convolutional architectures for learning to recognize single trial EEG event related potentials for P300 brain-computer interfaces (BCI)s. One advantage of the neural network solution is that it provides a natural way to share a lower-level feature space between subjects while adapting the classifier that works on that feature space. We compare ...
متن کاملOn Complex Valued Convolutional Neural Networks
Convolutional neural networks (CNNs) are the cutting edge model for supervised machine learning in computer vision. In recent years CNNs have outperformed traditional approaches in many computer vision tasks such as object detection, image classification and face recognition. CNNs are vulnerable to overfitting, and a lot of research focuses on finding regularization methods to overcome it. One ...
متن کاملCayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters
The rise of graph-structured data such as social networks, regulatory networks, citation graphs, and functional brain networks, in combination with resounding success of deep learning in various applications, has brought the interest in generalizing deep learning models to non-Euclidean domains. In this paper, we introduce a new spectral domain convolutional architecture for deep learning on gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2018
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/sty2908